跳到主要內容

Google讓模型依任務學習路由,有效提高大型語言模型推理效率



Google在其最新的人工智慧研究,發表了一種用於加速大型模型推理的方法,也就是說,使用該方法,在模型擴大的情況下,推理的成本不會顯著增加,因此能繼續提供有效率的服務。


由於擴展大型語言模型,能夠使像是T5、GPT-3和M4這類語言模型的結果,獲得明顯的提升,因此在追求更高品質結果的目標下,研究人員無不盡可能擴展模型。建構更大模型的常用方法,通常是增加層數,或是增加層的維度,使模型更深更寬。


這類密集模型採用輸入序列,序列會被切分成更小的元件,稱為令牌(Tokens),這些令牌會傳遞給整個網路,活化每一層和參數。Google提到,雖然這些大型且密集的模型,在多自然語言處理任務上獲得很不錯的結果,但是訓練成本也會隨著模型規模線性增加。


因此為了降低成本,研究人員開始採用混合專家(Mixture of Experts,MoE)方法,建構稀疏活化模型。與密集模型方法不同之處,在於傳遞給網路的每個令牌,會藉由跳過部分的模型參數,依循被稱作專家的獨立子網路,藉此減少計算量。


而將輸入令牌分配給各子網路的決定,則由一個小型的路由網路決定,混合專家方法讓擴增模型大小所付出的成本,不會成比例地線性增加,進而提升效能。

最熱情、專業有口碑的網頁設計公司讓您的網站改頭換面。

網頁設計公司推薦不同的風格,搶佔消費者視覺第一線

透過選單樣式的調整、圖片的縮放比例、文字的放大及段落的排版對應來給使用者最佳的瀏覽體驗,所以不用擔心有手機版網站兩個後台的問題,而視覺效果也是透過我們前端設計師優秀的空間比例設計,不會因為畫面變大變小而影響到整體視覺的美感。



推薦評價好的iphone維修中心

擁有專業的維修技術團隊,同時聘請資深iphone手機維修專家,現場說明手機問題,快速修理,沒修好不收錢



但Google提到,雖然這是一個有效的訓練策略,但是將長序列令牌發送給多個專家,會再次使推理計算成本增加,因為專家會分散在大量的加速器中,像是1.2T參數的GLaM模型,就需要用到256個TPU-v3晶片。因此又會與密集模型遭遇到相同的問題,混合專家模型提供服務所需要的處理器數量,與模型大小成線性關係增加,因而增加計算需求,並導致明顯的通訊開銷和工程複雜度。


因此Google發展了一種成為TaskMoE的方法,在模型擴展的同時,仍然能夠有效率地提供服務。Google的方法是訓練一個大型多任務模型,並在推理時,丟棄每個任務未使用的專家,從中萃取出更小、獨立的任務子網路,能夠適用於推理,又不會損失模型品質,並且顯著降低推理延遲,與其他混合專家模型以及使用知識蒸餾壓縮(Distillation)的模型相比,Google證明,他們的方法在多語言神經機器翻譯方面更為有效。



Google比較TaskMoE、典型混合專家模型TokenMoE和基準密集模型的吞吐量和每秒解碼令牌數,TaskMoE模型比TokenMoE模型小達7倍,可以直接在單個TPU-v3晶片上運算,不需要像是TokenMoE使用64個TPU-v3晶片,且TaskMoE吞吐量峰值是TokenMoE的2倍,Google提到,TokenMoE模型花了25%的推理時間在裝置間的通訊,而TaskMoE幾乎沒有通訊成本。


以結果來看,在多語言翻譯任務中,TaskMoE模型的分數,硬是比經蒸餾的TokenMoE模型平均高了2.1 BLEU。

來源鏈接:https://www.ithome.com.tw/news/148927


想知道最厲害的網頁設計公司嚨底家!

RWD(響應式網頁設計)是透過瀏覽器的解析度來判斷要給使用者看到的樣貌


如何讓商品強力曝光呢? 網頁設計公司幫您建置最吸引人的網站,提高曝光率!

以設計的實用美學觀點,規劃出舒適、美觀的視覺畫面,有效提昇使用者的心理期待,營造出輕鬆、愉悅的網站瀏覽體驗。


推薦評價好的iphone維修中心

擁有專業的維修技術團隊,同時聘請資深iphone手機維修專家,現場說明手機問題,快速修理,沒修好不收錢




Orignal From: Google讓模型依任務學習路由,有效提高大型語言模型推理效率

留言

這個網誌中的熱門文章

Python 併發總結,多線程,多進程,異步IO

1 測量函數運行時間 import time def profile(func): def wrapper(*args, ** kwargs): import time start = time.time() func( *args, ** kwargs) end = time.time() print ' COST: {} ' .format(end - start) return wrapper @profile def fib(n): if n<= 2 : return 1 return fib(n-1) + fib(n-2 ) fib( 35 )   2 啟動多個線程,並等待完成   2.1 使用threading.enumerate() import threading for i in range(2 ): t = threading.Thread(target=fib, args=(35 ,)) t.start() main_thread = threading.currentThread() for t in threading.enumerate(): if t is main_thread: continue t.join()   2.2 先保存啟動的線程 threads = [] for i in range(5 ): t = Thread(target=foo, args= (i,)) threads.append(t) t.start() for t in threads: t.join()   3 使用信號量,限制同時能有幾個線程訪問臨界區 from threading import Semaphore import time sema = Semaphor...

高雄十大包子名店出爐

, 圖文:吳恩文 高雄包子大賽落幕了,我只能就我個人意見, 介紹一下前十名這些包子,但是不能代表其他四位評審的意見,雖然身為評審長,我通常不會第一個表示意見,以免影響其他評審, 我主要工作是負責發問。   這次參賽的素包子很少,而且都不夠細致,又偏油,我不愛, 但是第一名的甜芝麻包-熔岩黑金包,竟然是素食得名- 漢來蔬食巨蛋店。   這包子賣相太好,竹炭粉的黑色外皮刷上金粉,一上桌,眾人驚呼, 搶拍照,內餡是芝麻餡,混一點花生醬增稠,加入白糖芝麻油, 熔岩爆漿的程度剛剛好,我一直以為芝麻要配豬油才行、 但是選到好的黑芝麻油一樣不減香醇, 當下有二位評審就想宅配回家。   尤其特別的是,黑芝麻餡室溫易化,師傅必須要輪班躲在冷藏室內, 穿著大外套才能包,一天包不了多少,我笑說,漢來美食,集團餐廳那麼多,實力雄厚,根本是「 奧運選手報名參加村裡運動會」嘛,其他都是小包子店啊, 但是沒辦法,顯然大家都覺得它好看又好吃, 目前限定漢來蔬食高雄巨蛋店,二顆88元,可以冷凍宅配, 但是要排一陣子,因為供不應求,聽說,四月份, 台北sogo店開始會賣。   第二名的包子,左營寬來順早餐店,顯然平易近人的多,一顆肉包, 十塊錢,是所有參賽者中最便宜的,當然,個頭也小, 它的包子皮明顯和其他不同,灰灰的老麵,薄但紮實有嚼勁, 肉餡新鮮帶汁,因為打了些水,味道極其簡單,就是蔥薑,塩, 香油,薑味尤其明顯,是老眷村的味道, 而特別的是老闆娘是台灣本省人, 當年完全是依據眷村老兵的口味一步一步調整而來,沒有加什麼糖、 五香粉,胡椒粉,油蔥酥。就是蔥薑豬肉和老麵香,能得名, 應該是它的平實無華,鮮美簡單,打動人心。   這是標準的心靈美食,可以撫慰人心,得名之前,寛來順已經天天排隊,現在,恐怕要排更久了, 建議大家六七點早點上門。   第三名,「專十一」很神奇,我記得比賽最後, 大家連吃了幾家不能引起共鳴的包子,有些累,到了專十一, 就坐著等包子,其他評審一吃,就催我趕快試,我一吃, 也醒了大半。   它的包子皮厚薄適中,但是高筋麵粉高些,老麵加一點點酵母, 我心中,它的皮屬一屬二,至於餡又多又好吃,蛋黃還是切丁拌入, 不是整顆放,吃起來「美味、均衡、飽滿」。一顆二十元。   老闆是陸軍專科十一期畢業取名專十一,...

韋伯連續劇終於更新 期待第一季順利完結

  地球天文學界的跳票大王詹姆斯·韋伯空間望遠鏡 (James Webb Space Telescope,縮寫為 JWST)自 1996 年以來斷斷續續不按劇本演出的連續劇終於讓焦慮的觀眾們又等到了一次更新:五層遮陽罩測試順利完成。 裝配完成的韋伯望遠鏡與好夥伴遮陽罩同框啦。Credit: NASA   嚴格的測試是任何空間任務順利成功的重中之重。遮陽罩,這個韋伯望遠鏡異常重要的親密夥伴,要是無法正常運轉的話,韋伯的這一季天文界連續劇說不準就要一直拖更了。   詹姆斯·韋伯空間望遠鏡是歷史上造出的最先進的空間望遠鏡。它不僅是一架紅外望遠鏡,還具有特別高的靈敏度。但想要達到辣么高的靈敏度來研究系外行星和遙遠的宇宙童年,韋伯童鞋必須非常"冷靜",體溫升高的話,靈敏度會大大折損。這個時候,遮陽罩就要大顯身手啦。   遮陽罩在韋伯的設計中至關重要。韋伯望遠鏡會被發射到拉格朗日 L2 點,運行軌道很高,遠離太陽、地球與月球。太陽是韋伯的主要熱量干擾的來源,其次是地球與月球。遮陽罩會有效阻斷來自這三大熱源的能量並保護韋伯維持在工作溫度正常運轉。這個工作溫度指的是零下 220 攝氏度(-370 華氏度;50 開爾文)。 上圖中我們可以看出,韋伯望遠鏡的配置大致可分為兩部分:紅色較熱的一面溫度為 85 攝氏度,藍色較冷的一面溫度達到零下 233 攝氏度。紅色的這部分中,儀器包括太陽能板、通信設備、計算機、以及轉向裝置。藍色部分的主要裝置包括鏡面、探測器、濾光片等。Credit: STSci.   遮陽罩的那一部分和望遠鏡的鏡面這部分可以產生非常極端的溫差。遮陽的這面溫度可以達到 110 攝氏度,足以煮熟雞蛋,而背陰處的部分溫度極低,足以凍結氧氣。   工程師們剛剛完成了五層遮陽罩的測試,按照韋伯在 L2 時的運行狀態安裝了遮陽罩。L2 距離地球約 160 萬公里。NASA 表示這些測試使用了航天器的自帶系統來展開遮陽罩,測試目前都已成功完成。韋伯望遠鏡遮陽罩負責人 James Cooper 介紹說這是遮陽罩"第一次在望遠鏡系統的电子設備的控制下展開。儘管這個任務非常艱巨,難度高,但測試順利完成,遮陽罩展開時的狀態非常驚艷"。   遮陽罩由五層 Kapton 製成。Kapton 是一種聚酰亞胺薄膜材料, 耐高溫絕...