跳到主要內容

全球熱帶森林儲碳能力恐退居第二 森林砍伐是主因

環境資訊中心外電;姜唯 翻譯;林大利 審校;稿源:Carbon Brief

研究發現,全世界熱帶森林從大氣中吸收二氧化碳的能力正在衰退,而位於高緯度寒冷地區的北方森林,吸收二氧化碳的速度正在增加。


這項新研究結合遙測資料和數學模型,詳細揭露1992年至2015年地球上所有生物區系的碳損失和碳吸收。研究顯示,世界上最重要的兩個陸地儲碳生態系統——熱帶雨林和北寒林,正在發生變化。



位於高緯度寒冷地區的北方森林,吸收二氧化碳的速度正在增加。照片來源:IBM(CC BY-NC-ND 2.0)

作者表示,研究探討的這段期間,熱帶森林碳損失的主要驅動力是森林砍伐。受影響特別嚴重的地區包括、印尼和東南亞。


另一位科學家表示,目前還不清楚是什麼因素使北寒林的碳增加。一個可能性是二氧化碳施肥效應,也就是大氣中二氧化碳含量增加促進植物生長。


整體而言,研究結果顯示熱帶森林吸收二氧化碳的能力衰退,相當令人擔憂。人類活動產生的溫室氣體排放約有30%被土地吸收,使其成為重要的「」。當樹木和其他類型的植群進行光合作用時,土地從大氣中吸收二氧化碳。植物利用二氧化碳長出枝條、根和葉。也就是說,只要植物還活著,就是長期的碳匯。


熱帶森林、北寒林合計佔土地儲碳的53% 其中北寒林的貢獻逐漸增加


這項新的發表在《自然生態與演化(Nature Ecology and Evolution)》期刊上,使用多種技術來繪製1992年至2015年全球所有生物區系的碳損失和碳吸收狀況,包括旱地、稀疏植生地、苔原(一種北極環境),以及溫帶林、北寒林和熱帶森林。


(溫帶森林所在地氣候溫和,四季分明,而北寒林則位於較冷的高緯度地區,特徵是常綠的松樹、雲杉和落葉松。)


下圖顯示了研究中所含的各種生物區系分布。溫帶、寒帶和熱帶生態系統進一步細分為「低矮植生地」或「森林」。「低矮植生地」表示未被原始森林覆蓋,地景以草、農田、灌木或莽原為主的區域。


1992-2015年世界陸地生物群系分布,包括稀疏植生地(黃色)、苔原(藍色)、北寒低矮植生地(淺綠色)、北寒林(深綠色)、溫帶低矮植生地(橄欖)、溫帶森林(黑色)、旱地 (橙色)、熱帶低矮植生地(綠松石)、熱帶森林(深藍色)和裸露地(灰色)。 資料來源:Tagesson et al. (2020)

作者結合數學模型和遙測資料分析每個地區的碳儲量。這些資料來自微波偵測「地表生物量」變化的衛星。地表生物量是覆蓋陸地表面的所有活植物的生物量,包含樹枝、樹葉、樹幹和落葉。


呼應過去研究,該研究發現熱帶森林和北寒林是最重要的儲碳生物群落。研究期間範圍內,這兩個生物群系合計佔土地儲碳的一半以上(53%)。


然而,來自瑞典隆德大學的主要作者托本.塔格森(Torben Tagesson)博士說,這兩個地區的碳儲存能力有所差異。「研究結果讓我們掌握二氧化碳吸收量在世界各地的分布情況,並顯示熱帶森林的貢獻正在大大減少。同時北寒林的貢獻正在增加。」


整體而言,土地碳匯在研究期間內有所增加,主要是因為北寒林吸收了更多的二氧化碳。研究發現,從1992年至2015年,陸地儲碳增加了10億噸。


下圖更深入地說明了這種差異。它顯示1992年至2015年期間,北寒林(黑線)和熱帶森林(紅線)對陸地碳匯的貢獻。上色區域表示誤差範圍。作者說,熱帶森林的不確定性較大,因為它們對影響碳損失和獲取的因素更加敏感。


1992-2015年,北寒林(黑色)和熱帶森林(紅色)對陸域碳匯的貢獻。上色區域顯示不確定性範圍。資料來源:Tagesson et al. (2020)

該圖顯示,熱帶森林很可能從陸地碳匯的最大貢獻者變為第二大,輸給了北寒林。塔格森說,下降的主要原因是熱帶地區的森林砍伐。「人為土地利用和土地覆蓋變化對熱帶森林的儲碳能力有很大的影響。」


推測施肥作用增加北寒林吸碳 研究:最快2030年就會失效


值得一提的是,該研究僅探討到2015年,但此後,世界各地熱帶森林砍伐都在加速。去年年底,巴西亞馬遜地區的森林砍伐達到十年來新高,而中非和西非的森林砍伐也達到高點。


另一份發表在《自然永續性(Nature Sustainability)》期刊的發現,從2008年到2014年,巴西亞馬遜流域的次生林損失增加了一倍以上,導致釋放出26億噸碳(「次生林」是指近期重新生長而成的森林)。


研究發現,熱帶地區的碳損失還受到乾旱等氣象因素的影響。會導致樹木死亡並加劇野火的危險。



巴西亞馬遜流域的次生林損失增加了一倍以上,導致釋放出26億噸碳。照片來源:CIAT/NeilPalmer(CC BY-SA 2.0)

塔格森說,北寒林吸收二氧化碳速度變快的原因難以理解。研究者發現,在研究期間內,土地利用變遷和氣象因素在北寒林碳儲量的增加上僅扮演次要角色。但是,他認為二氧化碳施肥效應可能發揮了作用。植物在光合作用中使用二氧化碳,因此,隨著人類釋放出更多的二氧化碳,植物似乎生長得更快,並且儲存更多的碳。


就算在研究期間,二氧化碳施肥作用增強了北方森林吸收二氧化碳的能力,但這種作用可能會減緩甚至逆轉。未參與研究的慕尼黑科技大學地表相互作用學者安賈.拉米格(Anja Rammig)教授說:


「問題在於:這些碳能在森林中保留多久?可能很快就會流失,因為樹木長得越快,就會死得越早。如果樹木提早死亡,可能10或20年後換看到一個完全逆轉的局面。」她評論,這項新研究相當紮實地描繪出陸域碳匯變化的全貌。「因為作者研究的是地表生物量,而不僅僅是林業研究中經常使用的『綠化』效果。」


「綠化」是從上而下測量土地隨著時間的推移而變綠的程度,通常來自高解析度衛星影像。另一方面,地表生物量是覆蓋陸地表面所有活植物的質量。這考慮了所有生物量,而非上到下的估計,因此是測量森林碳匯更完整的方法。


未參與研究的波士頓大學氣候森林動態學者藍格.米尼(Ranga Myneni)教授表示:「這項研究的價值在於釐清主要生物區系對陸地碳匯的貢獻,以及這些貢獻隨時間的變化。」

Tropical forests losing ability to absorb CO2, study says by DAISY DUNNE

The world's tropical forests are losing their ability to remove CO2 from the atmosphere, while boreal forests are absorbing emissions at an increasingly fast rate, a study finds.


The new analysis uses a combination of remote-sensing data and modelling to create a detailed picture of carbon loss and gain across all of Earth's biomes from 1992 to 2015.


It shows a diverging picture in the world's two most important ecosystems for storing carbon on land: tropical rainforests and "boreal" forests, which are found in the cold climate of the high latitudes.


The chief driver of carbon loss in tropical forests over the study period was deforestation. Particularly affected areas are likely to include the Amazon, Indonesia and southeastern Asia, the lead author tells Carbon Brief.


It is not fully clear what is driving carbon gains in boreal forests, another scientist tells Carbon Brief. However, one likely driver is the "CO2 fertilisation effect" – a term describing how increasing CO2 levels in the atmosphere can boost plant growth.


Overall, the findings paint a comprehensive picture of a "worrying" shift in the ability of tropical forests to absorb CO2 emissions, she adds.


Around 30% of the greenhouse gas emissions from human activity are absorbed by the land – making it an important "carbon sink".


The land takes in CO2 from the atmosphere when trees and other types of vegetation carry out photosynthesis, the process where plants use CO2 to build new materials, such as shoots, roots and leaves. This means that, as long as plants are alive, they can act as long-term "sinks" of CO2.


The new study, published in Nature Ecology and Evolution, uses a host of techniques to create a detailed picture of carbon loss and gain from 1992 to 2015 across all of the world's biomes, which include drylands, sparse land, tundra (an Arctic environment) and temperate, boreal and tropical regions.


("Temperate" forests are found in moderate climates and are known for experiencing four seasons, while boreal forests are found in cooler high-latitude regions and are characterised by evergreen pines, spruces and larches.)


The map below shows the distribution of the various biomes included in the study. Temperate, boreal and tropical ecosystems are further broken down into "low" or "forest". "Low" is used to indicate regions that are not covered by primary forest, but instead made up of grass, croplands, shrubland or savannah.



The distribution of the world's terrestrial biomes from 1992-2015, including sparse (yellow), tundra (blue), boreal low (light green), boreal forest (dark green), temperate low (olive), temperate forest (black), drylands (orange), tropical low (turquoise), tropical forest (dark blue) and bare (grey). Source: Supplementary information, Tagesson et al. (2020)


To analyse carbon storage in each region, the authors use a combination of modelling and remote-sensing data. This data comes from satellites that use microwaves to detect changes in "above-ground biomass" – a measure of all the living plant matter that covers the land's surface, including branches, leaves, trunks and fallen foliage.


In line with previous research, the study finds that tropical and boreal forests are the most important biomes for storing carbon. Together, these two biomes accounted for more than half (53%) the carbon held by land over the study period.


However, these two regions are now showing "divergence" in their ability to store carbon, says Dr Torben Tagesson, study lead author and researcher at Lund University in Sweden. He tells Carbon Brief:


"This study gives us an insight in how this CO2 uptake is distributed across the world – and we show that the contribution of the tropical forests is substantially decreasing. At the same time, the contribution of boreal forests is increasing."


Overall, the land carbon sink increased over the study period – largely as a result of the boreal forests absorbing more CO2, he adds. The study finds that the land sink grew by an additional 1bn tonnes of carbon from 1992-2015.


The chart below gives a more in-depth picture of this divergence. It shows the contribution of boreal (black line) and tropical (red line) forests to the land carbon sink from 1992 to 2015.



The shaded areas show the margins of error. (The uncertainties are larger for tropical forests because they are more sensitive to individual drivers of carbon loss and gain, the authors say.)


The contribution of boreal (black) and tropical (red) forests to the land carbon sink from 1992-2015. The shadow areas show margins of uncertainty. Source: Tagesson et al. (2020)


The chart shows how tropical forests have likely gone from being the largest contributor to the land carbon sink to the second largest behind boreal forests.


The primary reason for this decline is deforestation in tropical regions, says Tagesson:


"We can clearly see that the anthropogenic land use and land cover change have a big impact for the contribution of tropical forests."


It is worth noting that the study only looks at changes up until 2015 – and since then tropical deforestation has accelerated in many parts of the world, he adds.


Late last year deforestation of the Brazillian Amazon reached its highest level in a decade, while central and west Africa also saw a spike in forest loss.


A second study published today in Nature Sustainability finds that loss of "secondary forest" in the Brazillian Amazon more than doubled from 2008 to 2014 – causing the release of 2.6bn tonnes of carbon. ("Secondary forest" refers to forest that was replanted relatively recently.)


Carbon loss in tropical regions was also affected by "meteorological factors" such as droughts – which cause tree deaths and worsen the risk of wildfires, the study finds.


The reason why boreal forests are absorbing CO2 at an increasingly fast rate is more difficult to tease out, says Tagesson. The study finds that both land-use change and meteorological factors played "minor roles" in the observed increase in boreal carbon storage over the study period.


However, it is likely that the "CO2 fertilisation effect" is playing a role, he adds. Plants use CO2 in photosynthesis and, so, as humans emit more of it, it appears that plants are growing faster – and storing more carbon.


Though the CO2 fertilisation effect has boosted the ability of boreal forests to absorb CO2 over the study period, it is possible that this effect may slow down or even reverse, says Prof Anja Rammig, a researcher of land-surface interactions from the Technical University of Munich, who was not involved in the study. She tells Carbon Brief:


"The question is: How long will this carbon stay in forests? It could be that this carbon gets lost earlier because if trees are growing faster, they could die younger. If trees are dying younger, we could expect to see a completely reversed picture in 10 or 20 years."


The new study is "very solid" and creates a "comprehensive picture" of how the land carbon sink is changing, she adds. "A real strength is the authors look at above-ground biomass, rather than just 'greening', which is often used in forestry studies."


"Greening" is a top-down measurement of how much more green the land has become over time. It is often derived from satellites that can create high-resolution images.


On the other hand, above-ground biomass is a measure of all the living plant matter that covers the land's surface. Because it takes into account all biomass, rather than making a top-down estimate, it can be seen as a more complete way of measuring forest carbon, she says.


The high-resolution tools used in the study make it "extremely novel", agrees Prof Ranga Myneni, a researcher of climate-forest dynamics from Boston University, who was not involved in the research. He tells Carbon Brief:


"I think the value of this study is in being able to tease out contributions of different biomes to the land carbon sink and then look at the temporal dynamics of those contributions, principally in the case of tropical and boreal forests."


※ 全文及圖片詳見:()


參考資料



  • Tagesson, T., Schurgers, G., Horion, S. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink.(2020),

  • Wang, Y., Ziv, G., Adami, M. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat Sustain (2020).


※ 本文與 行政院農業委員會 林務局  合作刊登


作者


如果有一件事是重要的,如果能為孩子實現一個願望,那就是人類與大自然和諧共存。


於特有生物研究保育中心服務,小鳥和棲地是主要的研究對象。是龜毛的讀者,認為龜毛是探索世界的美德。

延伸閱讀



本站聲明:網站內容來源環境資訊中心https://e-info.org.tw/,如有侵權,請聯繫我們,我們將及時處理



【其他文章推薦】

※如何讓商品強力曝光呢? 網頁設計公司幫您建置最吸引人的網站,提高曝光率!!



網頁設計一頭霧水??該從何著手呢? 找到專業技術的網頁設計公司,幫您輕鬆架站!



※想知道最厲害的台北網頁設計公司推薦台中網頁設計公司推薦專業設計師"嚨底家"!!



Orignal From: 全球熱帶森林儲碳能力恐退居第二 森林砍伐是主因

留言

這個網誌中的熱門文章

Python 併發總結,多線程,多進程,異步IO

1 測量函數運行時間 import time def profile(func): def wrapper(*args, ** kwargs): import time start = time.time() func( *args, ** kwargs) end = time.time() print ' COST: {} ' .format(end - start) return wrapper @profile def fib(n): if n<= 2 : return 1 return fib(n-1) + fib(n-2 ) fib( 35 )   2 啟動多個線程,並等待完成   2.1 使用threading.enumerate() import threading for i in range(2 ): t = threading.Thread(target=fib, args=(35 ,)) t.start() main_thread = threading.currentThread() for t in threading.enumerate(): if t is main_thread: continue t.join()   2.2 先保存啟動的線程 threads = [] for i in range(5 ): t = Thread(target=foo, args= (i,)) threads.append(t) t.start() for t in threads: t.join()   3 使用信號量,限制同時能有幾個線程訪問臨界區 from threading import Semaphore import time sema = Semaphor...

高雄十大包子名店出爐

, 圖文:吳恩文 高雄包子大賽落幕了,我只能就我個人意見, 介紹一下前十名這些包子,但是不能代表其他四位評審的意見,雖然身為評審長,我通常不會第一個表示意見,以免影響其他評審, 我主要工作是負責發問。   這次參賽的素包子很少,而且都不夠細致,又偏油,我不愛, 但是第一名的甜芝麻包-熔岩黑金包,竟然是素食得名- 漢來蔬食巨蛋店。   這包子賣相太好,竹炭粉的黑色外皮刷上金粉,一上桌,眾人驚呼, 搶拍照,內餡是芝麻餡,混一點花生醬增稠,加入白糖芝麻油, 熔岩爆漿的程度剛剛好,我一直以為芝麻要配豬油才行、 但是選到好的黑芝麻油一樣不減香醇, 當下有二位評審就想宅配回家。   尤其特別的是,黑芝麻餡室溫易化,師傅必須要輪班躲在冷藏室內, 穿著大外套才能包,一天包不了多少,我笑說,漢來美食,集團餐廳那麼多,實力雄厚,根本是「 奧運選手報名參加村裡運動會」嘛,其他都是小包子店啊, 但是沒辦法,顯然大家都覺得它好看又好吃, 目前限定漢來蔬食高雄巨蛋店,二顆88元,可以冷凍宅配, 但是要排一陣子,因為供不應求,聽說,四月份, 台北sogo店開始會賣。   第二名的包子,左營寬來順早餐店,顯然平易近人的多,一顆肉包, 十塊錢,是所有參賽者中最便宜的,當然,個頭也小, 它的包子皮明顯和其他不同,灰灰的老麵,薄但紮實有嚼勁, 肉餡新鮮帶汁,因為打了些水,味道極其簡單,就是蔥薑,塩, 香油,薑味尤其明顯,是老眷村的味道, 而特別的是老闆娘是台灣本省人, 當年完全是依據眷村老兵的口味一步一步調整而來,沒有加什麼糖、 五香粉,胡椒粉,油蔥酥。就是蔥薑豬肉和老麵香,能得名, 應該是它的平實無華,鮮美簡單,打動人心。   這是標準的心靈美食,可以撫慰人心,得名之前,寛來順已經天天排隊,現在,恐怕要排更久了, 建議大家六七點早點上門。   第三名,「專十一」很神奇,我記得比賽最後, 大家連吃了幾家不能引起共鳴的包子,有些累,到了專十一, 就坐著等包子,其他評審一吃,就催我趕快試,我一吃, 也醒了大半。   它的包子皮厚薄適中,但是高筋麵粉高些,老麵加一點點酵母, 我心中,它的皮屬一屬二,至於餡又多又好吃,蛋黃還是切丁拌入, 不是整顆放,吃起來「美味、均衡、飽滿」。一顆二十元。   老闆是陸軍專科十一期畢業取名專十一,...

韋伯連續劇終於更新 期待第一季順利完結

  地球天文學界的跳票大王詹姆斯·韋伯空間望遠鏡 (James Webb Space Telescope,縮寫為 JWST)自 1996 年以來斷斷續續不按劇本演出的連續劇終於讓焦慮的觀眾們又等到了一次更新:五層遮陽罩測試順利完成。 裝配完成的韋伯望遠鏡與好夥伴遮陽罩同框啦。Credit: NASA   嚴格的測試是任何空間任務順利成功的重中之重。遮陽罩,這個韋伯望遠鏡異常重要的親密夥伴,要是無法正常運轉的話,韋伯的這一季天文界連續劇說不準就要一直拖更了。   詹姆斯·韋伯空間望遠鏡是歷史上造出的最先進的空間望遠鏡。它不僅是一架紅外望遠鏡,還具有特別高的靈敏度。但想要達到辣么高的靈敏度來研究系外行星和遙遠的宇宙童年,韋伯童鞋必須非常"冷靜",體溫升高的話,靈敏度會大大折損。這個時候,遮陽罩就要大顯身手啦。   遮陽罩在韋伯的設計中至關重要。韋伯望遠鏡會被發射到拉格朗日 L2 點,運行軌道很高,遠離太陽、地球與月球。太陽是韋伯的主要熱量干擾的來源,其次是地球與月球。遮陽罩會有效阻斷來自這三大熱源的能量並保護韋伯維持在工作溫度正常運轉。這個工作溫度指的是零下 220 攝氏度(-370 華氏度;50 開爾文)。 上圖中我們可以看出,韋伯望遠鏡的配置大致可分為兩部分:紅色較熱的一面溫度為 85 攝氏度,藍色較冷的一面溫度達到零下 233 攝氏度。紅色的這部分中,儀器包括太陽能板、通信設備、計算機、以及轉向裝置。藍色部分的主要裝置包括鏡面、探測器、濾光片等。Credit: STSci.   遮陽罩的那一部分和望遠鏡的鏡面這部分可以產生非常極端的溫差。遮陽的這面溫度可以達到 110 攝氏度,足以煮熟雞蛋,而背陰處的部分溫度極低,足以凍結氧氣。   工程師們剛剛完成了五層遮陽罩的測試,按照韋伯在 L2 時的運行狀態安裝了遮陽罩。L2 距離地球約 160 萬公里。NASA 表示這些測試使用了航天器的自帶系統來展開遮陽罩,測試目前都已成功完成。韋伯望遠鏡遮陽罩負責人 James Cooper 介紹說這是遮陽罩"第一次在望遠鏡系統的电子設備的控制下展開。儘管這個任務非常艱巨,難度高,但測試順利完成,遮陽罩展開時的狀態非常驚艷"。   遮陽罩由五層 Kapton 製成。Kapton 是一種聚酰亞胺薄膜材料, 耐高溫絕...